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ABSTRACT 

Thermal band broadening is known to be caused by the temperature depen- 
dence of ionic mobility. This dependence also strongly influences the temperature of 
the capillary by providing positive feedback between the temperature and power 
density. Previous thermal models of capillary electrophoresis have not fully consid- 
ered this “autothermal effect”. We show that it always causes a capillary to run hotter 
than is predicted by a constant conductivity model; temperature excursions two times 
greater are typical. 

We propose that the thermally induced parabolic distortion of the migration 
velocity can be countered with an opposing Poiseuille (pressure-driven) flow. Dis- 
persion calculations indicate that it may be possible to obtain plate numbers in excess 
of lo6 m-l even in very large bore (400 pm) capillaries. 

INTRODUCTION 

Capillary electrophoresis (CE) is characterized by voltage gradients of 100-300 
V/cm. Depending upon the buffer conductivity, power density can reach 1 kW/cm3. 
A significant radial temperature gradient arises as a consequence in the capillary 
lumen. Jorgenson and Lukacs’ pointed out that such gradients may cause band 
broadening through thermal Taylor dispersion2: In the warmer region near the center 
of the lumen, the temperature dependence of electrophoretic mobility increases 
migration velocities relative to the wall region. The solute band is distorted in 
a parabolic fashion, as sketched in Fig. 1 (where we depict a solute that migrates 
opposite the direction of electroosmotic flow). Radial molecular diffusion tends to 
average out radial concentration variations, so that dispersion appears to proceed by 
a diffusive rather than convective mechanism. Grushka et aL3 have investigated this 
effect mathematically, and find that this mechanism can indeed produce significant 
band broadening. 

It is known from large-scale electrophoresis4 that the temperature dependence of 
the buffer ions’ mobility strongly influences the buffer temperature through the 
“autothermal effect”. As the buffer in an electrophoresis apparatus warms due to the 
passage of current, its conductivity rises. If the power supply is operated in 
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Sample dispersion 

Fig. 1. Taylor dispersion in a heated capillary. The temperature profile in the lumen distorts the sample’s 
electrophoretic velocity. Molecular diffusion ameliorates the effect by radially averaging the concentration. 
The sample is depicted migrating opposite the direction of electroosmotic flow. t = time. 

a constant-voltage mode, the current will increase, thereby increasing the power 
dissipated in the buffer and warming the buffer further. The apparatus always runs 
hotter than a constant-conductivity model would predict. Further, there is a critical 
voltage above which a temperature increase produces a greater increase in Joule 
heating than in heat transfer to the coolant. Under such conditions the device 
experiences “autothermal runaway”. This phenomenon places an absolute limit on the 
voltage which may be used, and is not predicted by a constant conductivity model. 

Grushka et aL3 omitted the autothermal effect on the grounds that the difference 
between the autothermal and constant-conductivity temperature profiles is rather 
small in CE’ and does not justify the additional mathematical complexity. This is often 
the case. But since one of our purposes here is to examine modifications to CE which 
will permit operation with significant temperature gradients, we shall employ the more 
rigorous model. 

Since thermal Taylor dispersion is due to a nearly parabolic variation in 
electrophoretic velocity, we realized that it might be possible to compensate for the 
variation by opposing it with a small Poiseuille flow, as depicted in Fig. 2. Herten has 
used a Poiseuille flow to compensate for electroosmotic dispersion in closed-end tubes, 
where the goal was to flatten the hydrodynamic velocity profile by opposing a laminar 
flow with a second laminar flow. Our object is to distort the hydrodynamic flow in the 
capillary to compensate for the thermally induced distortion of the sample’s velocity. 

The band broadening model we present incorporates a laminar flow as well as 
our autothermal thermal model. We find that a small Poiseuille flow can dramatically 
improve column performance, although such improvement may be chimerical unless 
one can reduce the initial length of the sample to 1 mm or less. Our proposed method 
seems to hold the most promise for very large capillaries, i.e. those with internal 
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Fig. 2. By opposing the distortion of the sample’s electrophoretic velocity with a laminar flow, it is possible 
to give the sample a nearly flat velocity profile. 

diameters of 400 pm or more, for which it appears possible to obtain plate numbers of 
lo6 m-i or more. The ability to use such large capillaries could considerably ease 
detection problems; for the same sample length, sample loading in a 500~pm capillary 
is 100 times greater than in a 50-pm I.D. capillary. 

THEORY 

Thermal model 
The theory of electrically heated cylindrical objects is well established (e.g., see 

ref. 7). Hinkley’, and Coxon and Binder9 gave the first analyses specific to tubular 
electrophoresis equipment. Grushka et al3 and Jones and Grushka5 have recently 
presented analyses specifically for CE. Our analysis considers in greater detail (i) the 
ramifications of the autothermal effect and (ii) the sensitivity of the capillary to heat 
transfer conditions. 

Fig. 3. Capillary cross section, showing the lumen, silica wall and polyimide coat. 
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Fig. 3. shows the geometry used for the capillary. The energy balance on the 
buffer in the lumen is 

(1) 

Here I is the radial coordinate, Tthe buffer temperature, E the electric field, k the 
thermal conductivity of the buffer and IC the electrical conducivity. 

At the centerline the temperature must be finite. Heat transfer from the capillary 
surface to the surroundings is described by an overall heat transfer coeffient hoA. The 
boundary conditions are accordingly 

_k 9 = Tfinite r=O 

dr ho~(T - Tc) r = RL (2) 

In the second boundary condition Tc is the coolant temperature. The heat transfer 
coefficient is obtained by combining the thermal resistances of the silica wall, the 
polyimide coat, and the surface resistance according to the usual rule for cylindrical 
geometry7: 

(3) 

The radii Rw, RL and R, are as shown in Fig. 3, k, and k, are the thermal 
conductivity of the wall and polyimide coat, and h, is the surface heat transfer 
coefficient. For a liquid-cooled capillary, h, will be so large that its term in eqn. 3 can be 
neglected. For an air-cooled capillary, h, is a function of the surface temperature Ts, 
which can be found by equating the rates of heat transfer at the lumen surface and the 
outer capillary surface: 

-R kcT 
L dr r=RL 

= &W-s - Tc) 

As detailed below, hs can be calculated from a correlation involving a low-order 
non-linearity in T,. 

A linear model of the electrical conducitivity is mathematically convenient and is 
usually a good approximation over a lO-20°C temperature range: 

IC = rc,,[l + K~(T - To)] (3 

Here T,, is a reference temperature, ICY the conductivity at To, and rcl the 
temperature coefficient. For mathematical convenience we will take To = Tc with no 
loss of generality. 

Using the dimensionless variables defined in Table I puts the model in the form 
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TABLE I 

DIMENSIONLESS VARIABLES 

T - To 
e=- 

A Tc.r 
Dimensionless temperature 

9 = r/k Dimensionless radial coordinate 

AT,,, = 
lC#R; 

k 
Characteristic temperature rise 

Autothermal parameter 

Overall Biot number 

Id dlI --q- + 128 = -1 
v dq d? 

(6) 
dtI 0 finite ?j=o --= 
dtl +BioAfl ?j=l 

Here k is the “autothermal parameter”, the characteristic increase in electrical 
conductivity due to the characteristic temperature rise A Trer. BioA is the overall Biot 
number, a dimensionless heat transfer coefficient which compares the rate of heat 
conduction through the composite wall with the rate at which heat is removed by the 
coolant. 

The scaled surface temperature 8s is found from scaling eqn. 4 

d8 -- 
d? ,,=t 

= i B& 

where Bis is the surface Biot number, hsRp/k. 
The dimensionless temperature inside the capillary is found to be 

Jo and Jr are Bessel functions of the first kind. The first two terms in the 
numerator give the temperature variation across the lumen radius, while the last term 
gives the temperature at the lumen surface. The function f(A) expresses the autothermal 
effect, i.e., the additional temperature rise due to the feedback between temperature 
and power density. It is given by 

(9) 
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For non-zero R, f(1) is always less than unity, so the capillary always runs hotter 
than would be predicted by a constant-conductivity model. Further, at a crital value of 
the autothermal parameter, I*, f(L*) vanishes, implying autothermal runaway. Under 
such conditions the capillary is unable to attain thermal equilibrium by increasing its 
temperature, and the temperature rises until a vapor bubble forms. The threshold for 
autothermal runaway establishes an absolute upper bound on the voltage one may 
apply. In practice the buffer usually boils before il* is reached. 

The largest critical value of the autothermal parameter is obtained with perfect 
cooling, e.g., by forced liquid cooling of a capillary with a vanishingly thin wall. Setting 
the overall Biot number BioA to infinity in eqn. 9 shows that the maximum critical 
value is 1* w 2.4, the first root of Jo. 

In general, the heat transfer resistance is quite significant. Fig. 4 shows how the 
overall Biot number depends on the temperature difference between the surface of the 
capillary and the surroundings for a 100 x 200 (I.D. x O.D.) pm capilary cooled by 
natural convection in air. The method of calculation is described below. A typical 
value of BioA for rough calculations can be taken as 0.055. For the same capillary with 
forced liquid cooling, the surface resistance can be neglected, giving a BioA value of 
about 1.2. A similar result can be obtained with vigorous forced air cooling. 

For Bi OA < 5, f(L) can be well approximated by replacing the Bessel functions in 
eqn. 9 with the leading terms of their power series through 0(L4): 

From this one can obtain 

(10) 

(11) 

For natural convection air-cooled capillaries this expression shows that 
L* w ,/BioA. The relative inefficiency of air cooling compared to liquid cooling can be 
gauged by using the rough values for Bz ‘OA of 0.055 and 1.2 in eqn. 11. Ignoring the 
question of when the buffer will boil, a factor of Lg,rd/n,*i, w 18 times greater voltage 
can be applied to a 100 x 200 ,um,capillary if it is liquid cooled. 

20 40 aT(.c~ 80 100 

Fig. 4. Biot number for a 100 x 200 pm air-cooled capillary as function of temperature difference between 
the surface and surroundings. Solid line is overall Biot number, dashed line is surface Biot number. Surface 
resistance dominates heat transfer for air cooled capillaries. 
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For natural convection air-cooled capillaries the small magnitude of 1 permits us 
to replace the Bessel functions in eqn. 8 with the first few terms of their power series, 
giving 

t?,_ 

; (1 - q*> + $ (V4 - 1) + & 
( > 

1-g 

f(J) 
(12) 

Taking the limit A + 0 in eqn. 12 while holding EoA constant in f(L) gives the 
parabolic temperature profile of refs. 3 and 5. But since the critical value 1* for 
air-cooled capillaries is quite small, the value of 1 in practice will generally be an 
appreciable fraction of 1*. Thus f(L) will be small and the autothermal effect 
pronounced. Therefore, while the temperature profiles obtained in refs. 3 and 5 give 
the correct shape, they may seriously underpredict the magnitude of the temperature 
variation. 

Heat transfer coefficient 
For capillaries cooled by forced convection of air or liquid, the surface heat 

transfer coefficient will generally be so large that the surface resistance will be 
negligible in eqn. 3. Cooling by natural convection in air is much less efficient, so the 
surface resistance cannot be neglected. 

Heat transfer coefficient for natural convection air coolz’ng 
The surface resistance is the most significant resistance to heat transfer for 

a natural convection air-cooled capillary, although at higher temperatures radiation 
can account for l&20% of the heat loss. If the capillary is shielded from drafts, the 
convective contribution can be calculated from standard correlations for natural 
convection from a horizontal cylinder. For the calculations reported here, we used the 
following slightly modified form of McAdams”’ correlation for the convective 
Nusselt number: 

NuC = 0.45 + 0.55 (GrPr)* (13) 

The modification consisted of adding the asymptotic value 0.45 and adjusting 
the multiplicative constant to improve the fit to McAdams’ recommended inter- 
polation points. Gr and Pr are the Grashof and Prantl numbers. 

The radiant heat transfer coefficient is calculated assuming equal emissivities for 
the polyimide and surroundings: 

Nu 

r 
_ 2& 4G’ - TL!4) 

kc Ts - Tc 
(14) 

Here e is the emissivity, 0 is the Stefan-Boltzmann constant, and kc is the thermal 
conductivity of the coolant (air). A surface Nusselt number is obtained by adding the 
convective and radiative Nusselt numbers, Nus = Nut + NuR, and Nus is converted to 
a surface Biot number by 
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kc RP 
Bis = k K Nus (15) 

Since the heat transfer coefficients and surface temperature are coupled 
non-linearly, iteration is required to determine the capillary temperature. However, 
the radiative component is relatively small, and the non-linearity of the convective 
component is low-order, so the calculation is not a difficult one. 

Band spreading model 
Band spreading in CE can be treated as a problem in Taylor dispersion’, in 

which radial diffusion tends to average out radial concentration variations produced 
by convective dispersion. Whether such treatment is accurate depends upon the 
capillary dimensions and the substances being analysed. Gill and Sankarasubrama- 
nian” have shown that the residence time L/U must satisfy 

RZ ; $ 0.5% (16) 

This criterion is easily satisfied for capillaries up to 100 pm inner radius and 
proteins with diffusion coefficients of 0(10e6 cm’/s). For significantly larger 
capillaries the analysis looses rigor, because the residence time is not long enough to 
allow thorough radial mixing by diffusion. However, the result remains adequate for 
the purposes of gauging the effectiveness of adding a Poiseuille flow and of estimating 
the required magnitude of the flow. 

Ari~“~ formulation is the appropriate starting point. The mean velocity of 
a tracer pulse is given by 

U = 2 
s 

ur/drj 
0 

(17) 

Here u is the sample’s velocity. It is determined by the material’s electrophoretic 
mobility ~1, the electroosmotic mobility a’, and the Poiseuille flow. Each of these 
velocities depends on temperature through the variation of viscosity with temperature. 
In the most general form, the velocity is 

u = Eu’ + Eel - $ g (1 - q2) W) 

The rate at which the pulse spreads is characterized by the rate of growth of its 
second moment, given by” 

dm2 -_=2+4$ 
dt s wxdvl 

0 

where x is the departure from the mean velocity” 

(19) 

x=u-u (20) 
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and cl is the radial variation from the mean concentration” 

(21) 

From the second moment we obtain the effective, or Taylor, diffusion 
coefficient 12: 

Evaluating eqns. 19 and 21 using the temperature profile of eqn. 8 and an exact 
formula for the viscosity13 is best done numerically. However, for air cooled 
capillaries, we can use the approximate temperature profile, eqn. 11, and express the 
temperature dependence of viscosity with the following linear perturbation: 

1 
- = PO11 + w2fI (1)l 
P 

0 = &Ccr 
(23) 

Here p. is the reciprocal viscosity at To, and pi is the temperature coefficient. 
The integrands in eqns. 17, 19 and 21 are then polynomials, and after some 

tedium one finds 

)[bk+:J-2+l]+ 
f(4 

+ 1 
1 aoA2 

6% + 6) + 8 f~ 
1 

E (24) 

CD2 
- 
BioAf@) + l (25) 

Only the dominant terms for small BioA, I and o have been retained in these 
expressions. The factor enclosed in square brackets (eqn. 25) is the mean value of the 
velocity distortion. Here we see the desired effect: dP/dx can be adjusted to reduce the 
effective dispersion coefficient to the diffusive limit. We find 

dP Eao12 
-_= 
dx CO2 (26) ~ + 1 

R&f(n) 1 R&f(A) 

In using this equation it must be borne in mind that the mobility a0 and electric 
field E are signed quantities. Because the pressure gradient affects the mean velocity, 
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eqn. 26 may not maximize the plate number. We investigate this question after defining 
the plate number. 

The plate number is usually defined as 

(27) 

Eqn. 27 does not necessarily predict the plate numbers that would be deduced in 
practice from measurements of output peak widths. This because the increase in peak 
width may be so small in CE that the output peak width is substantially determined by 
the initial size of the sample. This effect can be quantified by adding the initial variance 
of the sample to the increase in variance produced in the column go give the 
“observed” plate number: 

Nabs = 
1 

(28) 

Here z is the initial length of the sample. 
We can estimate the optimal pressure gradient by substituting eqns. 24 and 25 

into eqn. 27, differentiating with respect to dP/dx, and setting the result to zero. 
A quadratic equation in dP/dx is obtained. One root is rejected since it leads to 
a negative value for N. The remaining root is quite complicated; for clarity we retain 
temperature dependence only in the terms involving the mobility of the sample: 

dP 
-_= 
dx 

8 (a0 + GE 

@PO 

D2 + E2 
3072 - - 

aoA2 ’ - - 8 (ao + ab) + m] (29) 

The first term under the root and the second term inside the square brackets are 
generally much smaller than the first term inside the brackets. Using the Taylor series 
approximation 

a - Jc+(-u++)2 z b- ;; (30) 

where [al > > {lbl, ICI}, we can estimate 

dP D2 

dx= - 192 (a0 + ab)ERtpo + 

Eao12 

Rif(Go 
(31) 

The first term is generally much smaller than the second, so we conclude that 
pressure gradients which minimize the effective dispersion coefficient little affect the 
mean velocity. Eqn. 26 adequately estimates the optimal pressure gradient. 
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EXPERIMENTAL 

We used four untreated silica capillaries, donated by Polymicro Technologies. 
The capillary dimensions are given in Table II. The actual diameters of the ends of the 
capillaries were measured under a microscope. The power supply was a Spellman 
UHR-30, with a maximum output of 30 kV. Voltage was read from the power supply’s 
front panel meter and current from a Hewlett-Packard 412A multimeter connected in 
series on the grounded side of the capillary. 

The buffer used for all the experiments contained 10 mM sodium phosphate, 
adjusted to pH 7.0 by mixing 10 mMmonobasic sodium phosphate and 10 mMdibasic 
sodium phosphate, and 50 mM KCl. The buffer was degassed immediately before 
experiments by agitating it while under a 600 mmHg vacuum. Upon heating, the 
degassed buffer began to outgas at 80-85°C. 

The sodium phosphate-KC1 buffer’s conductivity has the desirable property of 
virtually linear variation with temperature, as shown in Fig. 5. The buffer conductivity 
was measured with a YSI Model 35 conductance meter and YSI 3417 conductivity cell. 

In use, a capillary was positioned nearly horizontally, with its ends dipping into 
50-ml beakers which served as buffer reservoirs. The capillary, supports, and beakers 
were enclosed in a plexiglass box 91 cm wide, 50 cm deep and 107 cm high (36 x 20 
x 42 in.). The door of the box actuated interlock switches, which disabled the power 
supply when the door was open. In addition to providing operator safety, the box 
shielded the capillary from strong drafts. 

An experiment consisted of measuring the current passed by the capillary at 
fixed voltages, and terminated when a vapor bubble formed in the capillary. Average 
temperature in the lumen was then inferred from the calibration shown in Fig. 5. 

RESULTS 

Temperature experiments and thermal model 
Figs. 6-9 show comparisons of experiment and theory. The curves labeled 

“Autothermal theory” give the predicted average temperature obtained by radially 
averaging eqn. 10. The curves labeled “A = 0” show the temperatures predicted by 
a constant-conductivity model. The actual capillary dimensions given in Table II were 
used in the calculations. The heat transfer coefficient was calculated using eqns. 13-l 5. 

For reasons discussed below, the autothermal model generally overpredicts the 

TABLE II 

CAPILLARY DIMENSIONS 

Nominal Actual Actual Actual Length 
dimensions lumen diameter wall diameter polyimide (cm) 
(pm, I.D. x O.D.) (pm) (run) thickness (pm) 

250 x 350 263 313 21 91.7 
250 x 530 257 510 15 101.2 
100 x 200 98 172 18 100.3 
75 x 150 78 133 8.5 146.8 
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Fig. 5. Conductivity of the sodium phosphate-potassium chloride buffer used in the temperature 
experiments. 
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Fig. 6. Comparison of experimentally measured capillary temperature and theory for the 250 x 350 pm 
capillary. This figure also shows the effect of a l-cm/s draft on the predicted capillary temperature. 



THERMAL MODEL OF CE 203 

T CC) 

01 I I I 
0 40 80 120 

E (v/N 

Fig. 7. Comparison of experimentally measured temperature and theory for the 250 x 530 pm capillary. 
This capillary exhibited about 50°C superheating. 

capillary temperature, while the constant-conductivity model underpredicts it. At 
higher voltages the discrepancy between the data and constant-conductivity model 
approaches 40°C. 

The discrepancy between our data and the predictions of the autothermal model 
is most likely due to slow circulation of air inside the apparatus enclosure. We explored 
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Fig. 8. Comparison of experimentally measured temperature and theory for the 100 x 200 pm capillary. 
This capillary exhibited more than 100°C superheating. 
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Fig. 9. Comparison of experimentally measured temperature and theory for the 75 x 150 pm capillary. 

this effect by incorporating a 1 cm/s draft into the surface heat transfer coefficient used 
for the 250 x 350 ,um capillary simulation. As shown in Fig. 6, this markedly improves 
the agreement with experiment. Because convection reduces the capillary temperature, 
adding a draft to the constant-conductivity simulations would only worsen the 
predictions of the constant-conductivity model. 

A remarkable feature of Figs. 7 and 8 is the superheated temperatures achieved 
in these capillaries, some 50 and 120°C above the boiling point. A direct measurement 
of the temperature was made for the 100 x 200 capillary: a thermocouple, 
approximately 1 mm in diameter, was placed in contact with the capillary near the 
grounded end. Thermal contact was improved with a small amount of Omegatherm 
201 thermally conductive paste (Omega Engineering). Although this arrangement 
gave only a crude measurement of the surface temperature, the thermocouple 
registered 107°C at the highest electric field, verifying the occurrence of superheating. 

TABLE III 

PARAMETERS USED FOR PLATE NUMBER SIMULATIONS 

a0 = 4 pm cm/V s 
a; = 8 pm cm/V s 
D = 1 lo4 cm’js 
k = 6 mW/cm “C 
K~ = 10 mS/cm 
K1 = 0.046 “C-’ 
PO = 100 cm s/g 
/ll = 0.011 “c-l 
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Fig. 10. Plate number for an air-cooled, 100 cm long, 100 x 200 pm capillary. 
gradient it is possible to increase N by as much as 10 times. 

BY applying a pressure 

Dispersion model 
Parameters used for the following calculations are given in Table III. Fig. 10 

shows the plate number predicted for an air cooled, 100 cm long, 100 x 200 ,um 
capillary as a function of pressure gradient and electric field. With no pressure 
gradient, this capillary can achieve approximately lo6 plates. When a pressure gradient 
is applied the plate number can be ‘doubled at 150 V/cm, and increased to about 10’ 
plates at higher voltages. The pressures required are modest: 5 dynes/cm’ cm over 

E (v/cm) 

Fig. 11. Plate number for a liquid-cooled, 20 cm long, 100 x 200 pm capillary as a function of electric field 
for various applied pressure gradients. 
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Fig. 12. Plate number for a liquid-cooled, 100 cm long, 400 x 530 pm capillary. Remarkably high plate 
numbers can be obtained despite the large inner diameter. 

a 100 cm capillary is equivalent to a difference in elevation of the buffer reservoirs of 
about 5 mm. 

Fig. 11 shows the plate number predicted for a liquid cooled, 20 cm long, 100 
x 200 pm capillary. This capillary can also approach 10’ plates when a pressure 
gradient is applied. Higher pressure gradients are required here than for the air cooled 
case because the temperature variation across the lumen is greater. 

Fig. 12 shows the plate number predicted for a liquid-cooled, 100 cm long, 400 

I. 106 

dP/dx (dynes/cm3) 

Fig. 13. Observed plate number for an air cooled 100 cm long, 100 x 200 flrn capillary assuming a 2-mm long 
sample. Performance is severely degraded in comparison with Fig. 8. There is little benefit in applying 
a pressure gradient. 
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Fig. 14. Observed plate numbers predicted for a liquid cooled, 20 cm long, 100 x 200 pm capillary, assuming 
a 2-n-m long initial sample size. The sample size greatly degrades performance. 

x 530 pm capillary. This large bore capillary can reach high plate numbers with the 
assistance of a pressure gradient. 

For comparison, Figs. 13-15 show plate numbers predicted for these capillaries 
assuming an initial sample length of 2 mm. Such a sample size severely limits the 
performance of all the columns. Performance is most drastically reduced in the 20 cm 
long 100 x 200 pm column because of its short length. In contrast, much less 
degradation occurs in the 100 cm long 400 x 530 pm column. 

dPlti = 0 (dynes/m?) 

1 

E (V/cm) 

Fig. 15. Observed plate number predicted for a liquid cooled 100 cm long, 400 x 530 pm capillary, assuming 
a 2-mm long initial sample. Good performance can be obtained without a pressure gradient, and the plate 
number can be roughly doubled by applying a pressure gradient. 
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DISCUSSION 

Thermal model 
The results show that a constant-conductivity model can seriously underpredict 

the temperature in a capillary at high power levels. This can adversely affect estimates 
of electrophoretic mobility, residence time, and plate number. 

The simulation incorporating a 1 cm/s draft points up the extreme sensitivity of 
air cooled capillaries to drafts. Air cooled capillaries function rather like hot-wire 
anemometers. It is important to keep them carefully shielded from air currents. 

Forced liquid cooling offers substantially better heat transfer. Liquid cooled 
capillaries can be operated at significantly higher voltages than air cooled ones. The 
increase in voltage may be as much as a factor of 20; in practice however, the 
autothermal effect probably limits the increase to a factor less than 10. But since the 
autothermal effect amplifies electrophoretic mobility, the increase in migration 
velocities may yet be as much as 20 times. 

It is possible that the two capillaries which exhibited superheating possess very 
smooth lumen surfaces which provide no nucleation sites. The lumens are too large to 
interfere with bubble formation through capillary pressure; they would have to have 
radii of about 0.1 pm to give the observed superheating. This conclusion is supported 
by the smallest capillary (Fig. 7) which exhibited no superheating. 

Superheating has no obvious application in CE. However, carefully selected 
capillaries could provide convenient vessels for studying phenomena in aqueous 
solutions above the boiling point without the need for high-pressure apparatus. 

Band spreading model 
In cases where column performance is limited by thermal effects rather than 

sample loading or other dispersive phenomena, it is possible to improve the plate 
number to near the limit set by sample size and molecular diffusion by imposing 
a pressure gradient. The simulations show that at a particular pressure gradient, the 
optimal electric field is narrowly defined. This is because of the autothermal effect’s 
strong non-linearity. The theoretical relations given here can only be used to provide 
an initial guess of the best conditions, owing to the non-linear variation of viscosity 
and of the mobility of buffer and sample ions. 

Large capillaries appear to benefit the most from application of a pressure 
gradient. Such capillaries suffer greatly from thermal Taylor dispersion because their 
large radii preclude efficient radial diffusive averaging. But by flattening the velocity 
profile with a pressure gradient, plate numbers in excess of lo6 can be obtained. Larger 
capillaries would ease detection difficulties since sample capacity increases with the 
diameter squared. Wall interactions also would become less deleterious. 

The dispersion simulations illustrate the constraint on column performance 
imposed by the initial length of the sample. This constraint can be overcome, to some 
degree, by lengthening the column. For example, the upper limit on plate number 
based on sample size for a lOO-cm column and 2-mm sample pulse is 3 lo6 plates. 
Samples this small may4pose a detection problem. However, if one uses a large 
diameter capillary, sample loading can be increased even while sample length is 
decreased, e.g., a 2-mm long sample in a 500~pm capillary contains 20 times more 
material than a l-cm long sample in a 50-pm capillary. 
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CONCLUSIONS 

The autothermal effect makes CE capillaries run significantly hotter than 
constant conductivity models predict. The autothermal model presented here is in 
substantial agreement with experimental measurements of capillary temperatures. The 
temperature simulations illustrate the sensitiviy of air cooled capillaries to drafts. 
Forced liquid cooled capillaries offer better temperature control and allow higher 
operating voltages. 

The method we have proposed to reduce thermal band broadening, by imposing 
a small Poiseuille flow, appears promising. Best results should be obtained with 
capillaries which are considered too large to be useful for CE: It appears possible to 
obtain plate numbers in excess of lo6 in capillaries as large or larger than 400 pm. 

Performance of any CE column is limited by the initial length of the sample. 
Shorter samples improve plate number at the expense of detectability. Detectability 
can be maintained in large diameter capillaries, which offer the possibility of 
maintaining or increasing sample volume while decreasing sample length. 

SYMBOLS 

BioA 
Bis 

Cl 
CP 

D 

DT 

; 

f(4 
g 
Gr 

ho A 

hs 
Jo. JI 
k 

kc 
kp 
kw 
L 

? Nabs 
NW, Nurt . Nus 
P 
Pr 

L 
RP 
&V 

overall Biot number, hoARL/k 
surface Biot number, hsRPlk 
variation of concentration from mean value 
heat capacity 
diffusion coefficient 
effective, or Taylor, diffusion coefficient 
emissivity 
electric field 
autothermal function 
gravitational acceleration 
Grashof number, D3p2agAT/p2 
overall heat transfer coefficient 
surface heat transfer coefficient 
Bessel functions 
thermal conductivity of water 
thermal conductivity of coolant 
thermal conductivity of polyimide 
thermal conductivity of capillary wall 
length of capillary 
second moment of concentration distribution 
plate number and observed plate number 
convective, radiative and surface Nusselt numbers 
pressure 
Prandtl number, c&k 
radial coordinate 
lumen radius 
polyimide outer radius 
silica wall outer radius 
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time 
temperature in lumen 
coolant temperature 
surface temperature 
reference temperature for electrical conductivity 
sample velocity 
mean velocity 
axial coordinate 
initial length of sample 
electrophoretic and electroosmotic mobility 
reference electrophoretic and electroosmotic mobility 
electrophoretic and electroosmotic mobility temperature coefficients 
coeffkient of thermal expansion 
characteristic temperature rise 
dimensionless radial coordinate, r/RL 
variable of integration 
electrical conductivity 
reference electrical conductivity 
electrical conductivity temperature coeffkient 
autothermal parameter 
viscosity 
reference reciprocal viscosity 
temperature coeffkient of reciprocal viscosity 
departure from mean velocity 
density 
Stephan-Boltzmann constant 
dimensionless temperature 
characteristic dimensionless variation of reciprocal viscosity 

REFERENCES 

1 J. W. Jorgenson and K. D. Lukacs, Science (Washington, D.C.), 222 (1983) 266. 
2 G. I. Taylor, Proc. Roy. Sot., A219 (1953) 186. 
3 E. Grushka, R. M. McCormick and J. J. Kirkland, Anat. Chem., 61 (1989) 241. 
4 E. Lynch and D. A. Saville, Chem. Eng. Commun., 9 (1981) 201. 
5 A. E. Jones and E. Grushka, J. Chromatogr., 466 (1989) 219. 
6 S. Herten, Chromatogr. Rev., 9 (1967) 122. 
7 R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, Wiley, New York, 1960. 
8 J. 0. N. Hinkley, J. Chromarogr., 109 (1975) 218. 
9 M. Coxon and M. J. Binder, J. Chromarogr., 101 (1974) 1. 

10 W. H. McAdams, Hear Transmission, McGraw-Hill, New York, 3rd ed., 1954, p. 176. 
11 W. N. Gill and R. Sankarasubramanian, Proc. R. Sot. London, Ser. A, 316 (1970) 341. 
12 R. Aris, Proc. R. Sot. London, Ser. A, 235 (1956) 67. 
13 R. C. Reid, J. M. Prausnitz and T. K. Sherwook, The Properties of Gases and Liquids, McGraw-Hill, 

New York, 3rd ed., 1977, p. 454. 


